Deep learning training speed with 1080 Ti and M1200

1 min read

I compared the speed of Nvidia’s 1080 Ti on a desktop (Intel i5-3470 CPU, 3.2G Hz, 32G memory) and NVIDIA Quadro M1200 w/4GB GDDR5, 640 CUDA cores on a laptop (CPU: Intel Core i7-7920HQ (Quad Core 3.10GHz, 4.10GHz Turbo, 8MB 45W, Memory: 64G).

The code I used is Keras’ own example (mnist_cnn.py) to classiy MNIST dataset:

MNIST dataset
MNIST dataset
'''Trains a simple convnet on the MNIST dataset.

Gets to 99.25% test accuracy after 12 epochs
(there is still a lot of margin for parameter tuning).
16 seconds per epoch on a GRID K520 GPU.
'''

from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

batch_size = 128
num_classes = 10
epochs = 12

# input image dimensions
img_rows, img_cols = 28, 28

# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
#model.add(Dropout(1))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])

model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,
          verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

The result is that 1080 Ti is 3 times faster than M1200:

M1200 (1 epoch) 1080 Ti (1 epoch)
18s 6s


Receive email notification via email
Don't want to miss new papers in your field? Check out Stork we developed:

Stork API, a single line becomes a list of…

I want to show a list of my own publications on my webpage, is there an easy way to do so? Yes, Stork API,...
Xu Cui
26 sec read

How to find NIRS experts using “Find Experts” app

If you are a newcomer in the NIRS field, you may wonder who are the experts in this field. You might know a few...
Xu Cui
18 sec read

4 Replies to “Deep learning training speed with 1080 Ti and M1200”

Leave a Reply to Xu Cui Cancel reply

Your email address will not be published. Required fields are marked *