Noise removal in NIRS

41 sec read

Noise removal methods in NIRS can be divided into 4 categories:

  1. reducing noise based on its temporal characteristics: The instrument noise is usually in the high frequency band and thus can be removed by band pass filtering. Band pass filtering can also remove low frequency drift. A real-time version of band pass filtering is exponential moving average (EMA, Utsugi 2007).
  2. reducing noise based on its spatial characteristics: motion related noise is assumed to be more spatially spread. The “common” component of the signal across multiple channels (e.g. using PCA) can be treated as noise. (Zhang 2005; Wilcox 2005)
  3. reducing noise based on its effect on the correlation between oxy- and deoxy-Hb: motion noise will make the correlation between oxy- and deoxy-Hb, which is typically negative, less negative. (Cui 2010) check out
  4. measuring noise independently and subtracting it from the signal. (Zhang 2007, 2009)

Band pass filtering or moving average performs pretty well in reducing non-spike like noise and this method is a standard component in my data analysis. For large spike-like motion artifact, correlation based method works fairly well (even in real-time settings). Of course, for offline analysis, one can also remove these large spikes manually (or semi-automatically).



写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

第五十八期fNIRS Journal Club通知2024/12/07, 10am 王硕教授团队

理解噪音中的言语对老年听力损失患者来说是一个重大挑战。来自首都医科大学附属北京同仁医院耳鼻咽喉科研究所王硕教授团队的助理研究员王松建将为大家介绍他们采用同步EEG-fNIRS技术,从神经与血流动力学两
Wanling Zhu
10 sec read

第五十七期fNIRS Journal Club视频 王欣悦博士

Youtube: https://youtu.be/vyo-kECC2Ps 优酷:https://v.youku.com/v_show/id_XNjQzNTA0ODIwMA==.html 肢体语言——
Wanling Zhu
20 sec read

第五十七期fNIRS Journal Club通知2024/11/02, 10am 王欣悦博士

肢体语言——例如人际距离、眼神、手势等,如何影响我们的交流,是一个有趣的谜题。它们是优雅而神秘的代码,无本可依、无人知晓,却又无人不懂。来自南京师范大学的王欣悦博士将分享如何通过fNIRS超扫描技术,
Wanling Zhu
16 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *