NIRS can’t measure deep brain, … maybe it can!

1 min read

Is NIRS able to measure signal from deep brain structure, such as amygdala? The short answer is no. NIRS is only able to measure the surface of the brain. This is a serious limitation of NIRS compared to fMRI which is able to measure the entire brain.

However, brain is a highly connected network. Deep brain is not isolated from the surface. So maybe we can infer the deep brain activity based on the surface. And this is exactly what we have done.

In a recent publication titled “Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy”, we used concurrent fMRI-NIRS technology to measure both deep and surface brain activity and explored the possibility to infer deep brain based on surface brain activity measure by NIRS. The result is very encouraging – we are able to infer deep brain from surface activity (correlation ~0.7).

This paper is published in Biomedical Optics Express with Dr Ning Liu, a NIRS expert, as the first author. You can find the paper at http://www.opticsinfobase.org/boe/fulltext.cfm?uri=boe-6-3-1074&id=312512

Abstract:

Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying brain function because it is non-invasive, non-irradiating and relatively inexpensive. Further, fNIRS potentially allows measurement of hemodynamic activity with high temporal resolution (milliseconds) and in naturalistic settings. However, in comparison with other imaging modalities, namely fMRI, fNIRS has a significant drawback: limited sensitivity to hemodynamic changes in deep-brain regions. To overcome this limitation, we developed a computational method to infer deep-brain activity using fNIRS measurements of cortical activity. Using simultaneous fNIRS and fMRI, we measured brain activity in 17 participants as they completed three cognitive tasks. A support vector regression (SVR) learning algorithm was used to predict activity in twelve deep-brain regions using information from surface fNIRS measurements. We compared these predictions against actual fMRI-measured activity using Pearson’s correlation to quantify prediction performance. To provide a benchmark for comparison, we also used fMRI measurements of cortical activity to infer deep-brain activity. When using fMRI-measured activity from the entire cortex, we were able to predict deep-brain activity in the fusiform cortex with an average correlation coefficient of 0.80 and in all deep-brain regions with an average correlation coefficient of 0.67. The top 15% of predictions using fNIRS signal achieved an accuracy of 0.7. To our knowledge, this study is the first to investigate the feasibility of using cortical activity to infer deep-brain activity. This new method has the potential to extend fNIRS applications in cognitive and clinical neuroscience research.



写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

第六十期fNIRS Journal Club通知2025/3/8, 10am 邹立业教授团队

长时间久坐行为往往会引起脑血流供应不足,进而导致注意力下降及执行功能表现减弱,并影响人脑学习的信息加工过程。以往研究表明体育活动对执行功能表现具有积极作用。然而,关于在久坐期间进行短时有氧运动干预是否
Wanling Zhu
14 sec read

第五十九期fNIRS Journal Club视频 赵斐博士

Youtube: https://youtu.be/dIlSEsJvHm8 优酷:https://v.youku.com/v_show/id_XNjQ1MDE3OTY2MA==.html?spm=a2
Wanling Zhu
17 sec read

第五十九期fNIRS Journal Club通知2025/1/11, 10am 赵斐博士

糖尿病患者持续的高血糖水平会导致全身蛋白质的结构和功能变化,以及大脑中蛋白质聚集体的积累,影响认知功能。来自美国Wayne State University的赵斐博士将分享一项使用功能性近红外光谱(f
Wanling Zhu
12 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *