NIRS hyperscanning data analysis (2)

1 min read

NIRS hyperscanning data analysis (1)
NIRS hyperscanning data analysis (2)
NIRS hyperscanning data analysis (3)
NIRS hyperscanning data analysis (4)

Data collection

We used Hitachi’s ETG 4000 to collect data. This device normally collects data from a single head. In some of the configurations, it has a set of fibers collecting the signal from the left brain, the other set from the right brain. We thought, why don’t we use the second set to collect signal on another person?

That’s what we did. The ETG 4000 system still treated the two streams of signals from a single brain, but later when we do the data analysis, we separated them.

We used one 3×5 patch on one person’s head, and the other 3×5 patch on the 2nd person’s head. The patch covers only a small area of the brains, so we need to pick up which brain region we need to measure. We chose the frontal cortex. Frankly speaking we don’t have a solid reason to do so, except:

(1) for a high level cognitive task like collaboration, frontal cortex is probably involved;
(2) the frontal region is easier to place the NIRS patch (there is no hair! Separating hair to get a better signal drives me crazy!), and the signal-to-noise ratio is higher compared to other brain areas (the skull is thinner in this region, as demonstrated by our other publications, see figure below).

Skull thickness
Skull thickness

So we put the caps on the frontal lobe – mostly for easier of experiment. You can see a picture below. In the picture are Dan (researcher assistant at that time) and me.

NIRS cap on head
NIRS cap on head

We tried to put the cap in the same position for all subjects. Of course, everybody’s head shape is different, so it’s not possible to precisely put the cap in the same location. But we follow some standard techniques such as using the eyebrow and midline as the landmark. In the end, we find this approach works reasonably well.

For this experiment, we did not collect the 3D digitizer data (to localize the channel location more precisely). The current method of collecting 3D digitizer data is tedious and prone to errors. I wish in the future the NIRS device can automatically tell the locations of each probe.



写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

第六十一期fNIRS Journal Club通知2025/4/12, 10am 冯小丹

无论是对人类个体的认知能力发展还是对整个社会的文明演进来说,课堂教学都发挥着不可替代的独特作用。正如著名教育思想家夸美纽斯 (John Amos Comenius) 所言,“年轻人最好还是在班级里一起
Wanling Zhu
10 sec read

第六十期fNIRS Journal Club视频 邹立业教授团队

Youtube: https://youtu.be/8NG3pwUF9sM 优酷:https://v.youku.com/video?vid=XNjQ2ODE3NzA4NA%3D%3D 长时间久坐行为
Wanling Zhu
19 sec read

第六十期fNIRS Journal Club通知2025/3/8, 10am 邹立业教授团队

长时间久坐行为往往会引起脑血流供应不足,进而导致注意力下降及执行功能表现减弱,并影响人脑学习的信息加工过程。以往研究表明体育活动对执行功能表现具有积极作用。然而,关于在久坐期间进行短时有氧运动干预是否
Wanling Zhu
14 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *