NIRS hyperscanning data analysis (2)

1 min read

NIRS hyperscanning data analysis (1)
NIRS hyperscanning data analysis (2)
NIRS hyperscanning data analysis (3)
NIRS hyperscanning data analysis (4)

Data collection

We used Hitachi’s ETG 4000 to collect data. This device normally collects data from a single head. In some of the configurations, it has a set of fibers collecting the signal from the left brain, the other set from the right brain. We thought, why don’t we use the second set to collect signal on another person?

That’s what we did. The ETG 4000 system still treated the two streams of signals from a single brain, but later when we do the data analysis, we separated them.

We used one 3×5 patch on one person’s head, and the other 3×5 patch on the 2nd person’s head. The patch covers only a small area of the brains, so we need to pick up which brain region we need to measure. We chose the frontal cortex. Frankly speaking we don’t have a solid reason to do so, except:

(1) for a high level cognitive task like collaboration, frontal cortex is probably involved;
(2) the frontal region is easier to place the NIRS patch (there is no hair! Separating hair to get a better signal drives me crazy!), and the signal-to-noise ratio is higher compared to other brain areas (the skull is thinner in this region, as demonstrated by our other publications, see figure below).

Skull thickness
Skull thickness

So we put the caps on the frontal lobe – mostly for easier of experiment. You can see a picture below. In the picture are Dan (researcher assistant at that time) and me.

NIRS cap on head
NIRS cap on head

We tried to put the cap in the same position for all subjects. Of course, everybody’s head shape is different, so it’s not possible to precisely put the cap in the same location. But we follow some standard techniques such as using the eyebrow and midline as the landmark. In the end, we find this approach works reasonably well.

For this experiment, we did not collect the 3D digitizer data (to localize the channel location more precisely). The current method of collecting 3D digitizer data is tedious and prone to errors. I wish in the future the NIRS device can automatically tell the locations of each probe.



写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

第五十八期fNIRS Journal Club通知2024/12/07, 10am 王硕教授团队

理解噪音中的言语对老年听力损失患者来说是一个重大挑战。来自首都医科大学附属北京同仁医院耳鼻咽喉科研究所王硕教授团队的助理研究员王松建将为大家介绍他们采用同步EEG-fNIRS技术,从神经与血流动力学两
Wanling Zhu
10 sec read

第五十七期fNIRS Journal Club视频 王欣悦博士

Youtube: https://youtu.be/vyo-kECC2Ps 优酷:https://v.youku.com/v_show/id_XNjQzNTA0ODIwMA==.html 肢体语言——
Wanling Zhu
20 sec read

第五十七期fNIRS Journal Club通知2024/11/02, 10am 王欣悦博士

肢体语言——例如人际距离、眼神、手势等,如何影响我们的交流,是一个有趣的谜题。它们是优雅而神秘的代码,无本可依、无人知晓,却又无人不懂。来自南京师范大学的王欣悦博士将分享如何通过fNIRS超扫描技术,
Wanling Zhu
16 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *