NIRS hyperscanning data analysis (3) quality check

1 min read

NIRS hyperscanning data analysis (1)
NIRS hyperscanning data analysis (2)
NIRS hyperscanning data analysis (3)
NIRS hyperscanning data analysis (4)

Data quality check

1. Behavior data

To identify behavior abnormalities, we need to plot the behavior data for each individual subject. In this case, we plotted the reaction time vs trial. An example is shown below. It apparent that subject 2 (red) did something strange in trial 20.

behavior data (reaction time)
behavior data (reaction time)

We can also plot the difference of reaction time and the threshold to win. Obviously they only win 1 trial and this is unusual.

Reaction time different and threshold
Reaction time different and threshold

We can also find the mean, min and max of the reaction times. Below is the script:

hold on;plot([1:40],subjectData.reaction2,'s-r')

hold on;plot([1:40],subjectData.winthreshold,'s-m')
legend({'reaction time difference','threshold'})

winNum = sum((subjectData.winthreshold - abs(subjectData.reaction1-subjectData.reaction2))>0);
disp('winning trials = ')




2. NIRS data

The 1st way to identify abnormalities in NIRS data is to plot all channel’s time series in one figure, like the figure below. In the following figure, the time series for each channel is plotted and aligned vertically. It’s easy to identify that the green channel (channel #44) has much more noise than others.

NIRS time series

Another way is to use wavelet transform. If the NIRS signal was acquired well, then the heart beating signal should be captured, leaving a bright brand in the frequency ~1Hz in the wavelet transform plot, just like the left plot in the figure below (the band close to period 8). If there is no such band, it does not necessarily mean the signal is trash, but you need to be cautious.

NIRS wavelet
NIRS wavelet


The third way is to check the correlation between hbo and hbr. They are supposed to have negative correlation. If not, or if they have perfect negative correlation (-1), then they might contain too much noise. We have a separate article on this method. Please check out




for ii=1:52; wt(hbo(:,ii)); pause; end

[badchannels] = checkDataQuality(hbo,hbr);

3. Digitizer data

You want to make sure the measure digitizer data is reasonable by looking at the probe positions in a 3D space.

Digitizer data
Digitizer data
figure;plot3(pos_data(:,1),pos_data(:,2),pos_data(:,3),'o');axis equal;

第十六期 fNIRS Journal Club 通知 2021/01/23,1pm

瑞典 Karolinska Institutet的潘亚峰博士将为大家讲解他们最近发布的一篇用超扫描研究教师学生关系的文章。热烈欢迎大家参与讨论。潘博士为了这次报告,需要一大早就起床。因此本次报告的时间比过去要稍晚一点。 时间: 北京时间2021年1月23日周六下午1点地点: https://zoom.com房间号: 815 4986 9861密码: 796475 Pan, Guyon, Borragán, Hu, Peigneux (2020) Interpersonal brain synchronization with instructor compensates for learner’s...
Xu Cui
53 sec read

第十五期 fNIRS Journal Club 视频

北京时间2020年12月27日周日上午10点, 香港中文大学二年级博士生胡玥讲了一篇用神经网络去除运动伪迹的文章。视频如下: Youtube: Youku:
Xu Cui
4 sec read

第十五期 fNIRS Journal Club 通知 2020/12/27,10am

香港中文大学二年级博士生胡玥为大家介绍一篇方法学文献,即基于人工神经网络重構的多通道fNIRS信号运动伪影校正。该方法不仅对心理学,还对运动科学以及康复医学等领域的研究具有重要的参考价值,热烈欢迎大家参与讨论。 时间: 北京时间2020年12月27日周日上午10点地点: https://zoom.com房间号: 859 4100 6556 密码: 467563 Lee, G., Jin, S. H., & An, J. (2018). Motion artifact correction of multi-measured functional...
Xu Cui
51 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *