NIRS hyperscanning data analysis (3) quality check

1 min read

NIRS hyperscanning data analysis (1)
NIRS hyperscanning data analysis (2)
NIRS hyperscanning data analysis (3)
NIRS hyperscanning data analysis (4)

Data quality check

1. Behavior data

To identify behavior abnormalities, we need to plot the behavior data for each individual subject. In this case, we plotted the reaction time vs trial. An example is shown below. It apparent that subject 2 (red) did something strange in trial 20.

behavior data (reaction time)
behavior data (reaction time)

We can also plot the difference of reaction time and the threshold to win. Obviously they only win 1 trial and this is unusual.

Reaction time different and threshold
Reaction time different and threshold

We can also find the mean, min and max of the reaction times. Below is the script:

figure;plot([1:40],subjectData.reaction1,'s-')
hold on;plot([1:40],subjectData.reaction2,'s-r')

figure('color','w');plot([1:40],abs(subjectData.reaction1-subjectData.reaction2),'s-k')
hold on;plot([1:40],subjectData.winthreshold,'s-m')
legend({'reaction time difference','threshold'})
xlabel('trial');ylabel('second')

winNum = sum((subjectData.winthreshold - abs(subjectData.reaction1-subjectData.reaction2))>0);
disp('winning trials = ')
disp(winNum)

disp(length(subjectData.eventwarning))

disp(mean(subjectData.reaction1))
disp(max(subjectData.reaction1))
disp(min(subjectData.reaction1))

disp(mean(subjectData.reaction2))
disp(max(subjectData.reaction2))
disp(min(subjectData.reaction2))

2. NIRS data

The 1st way to identify abnormalities in NIRS data is to plot all channel’s time series in one figure, like the figure below. In the following figure, the time series for each channel is plotted and aligned vertically. It’s easy to identify that the green channel (channel #44) has much more noise than others.

NIRS time series

Another way is to use wavelet transform. If the NIRS signal was acquired well, then the heart beating signal should be captured, leaving a bright brand in the frequency ~1Hz in the wavelet transform plot, just like the left plot in the figure below (the band close to period 8). If there is no such band, it does not necessarily mean the signal is trash, but you need to be cautious.

NIRS wavelet
NIRS wavelet

 

The third way is to check the correlation between hbo and hbr. They are supposed to have negative correlation. If not, or if they have perfect negative correlation (-1), then they might contain too much noise. We have a separate article on this method. Please check out https://www.alivelearn.net/?p=1767

[hbo,hbr,mark]=readHitachData('SA06_MES_Probe1.csv');

figure;plotTraces(hbr,1:52,mark)

figure;wt(hbo(:,1))

for ii=1:52; wt(hbo(:,ii)); pause; end

[badchannels] = checkDataQuality(hbo,hbr);

3. Digitizer data

You want to make sure the measure digitizer data is reasonable by looking at the probe positions in a 3D space.

Digitizer data
Digitizer data
pos_data=readPosFile('0001.pos');
figure;plot3(pos_data(:,1),pos_data(:,2),pos_data(:,3),'o');axis equal;



写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

fNIRS Frontier Weekly Report (free service)

Subscription Link: https://www.storkapp.me/readingguide/ If you are interested in the fNIRS (Functional Near-Infrared Spectroscopy) field, Stork is now offering a free service: every week, we will collect and summarize the fNIRS-related literature pu
Xu Cui
3 min read

【福利】免费订阅 fNIRS 前沿周报

订阅链接: https://www.storkapp.cn/readingguide/ 如果您对 fNIRS 这个领域感兴趣,现在文献鸟 Stork 提供一个免费的服务,每周帮您搜集总结上周发表的与
Xu Cui
22 sec read

第六十六期fNIRS Journal Club通知2025/9/27, 10am 李洪博士 牛海晶教授

该文章的声音简介(中文版): 该文章的声音简介(英文版): 随着老龄化加剧,工作记忆下降成为影响老年人生活质量的重要问题。经颅光刺激 (tPBM) 作为一种新兴、无创的神经调控技术,通过特定波长的(近
Wanling Zhu
9 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *