NIRS hyperscanning data analysis (3) quality check

1 min read

NIRS hyperscanning data analysis (1)
NIRS hyperscanning data analysis (2)
NIRS hyperscanning data analysis (3)
NIRS hyperscanning data analysis (4)

Data quality check

1. Behavior data

To identify behavior abnormalities, we need to plot the behavior data for each individual subject. In this case, we plotted the reaction time vs trial. An example is shown below. It apparent that subject 2 (red) did something strange in trial 20.

behavior data (reaction time)
behavior data (reaction time)

We can also plot the difference of reaction time and the threshold to win. Obviously they only win 1 trial and this is unusual.

Reaction time different and threshold
Reaction time different and threshold

We can also find the mean, min and max of the reaction times. Below is the script:

figure;plot([1:40],subjectData.reaction1,'s-')
hold on;plot([1:40],subjectData.reaction2,'s-r')

figure('color','w');plot([1:40],abs(subjectData.reaction1-subjectData.reaction2),'s-k')
hold on;plot([1:40],subjectData.winthreshold,'s-m')
legend({'reaction time difference','threshold'})
xlabel('trial');ylabel('second')

winNum = sum((subjectData.winthreshold - abs(subjectData.reaction1-subjectData.reaction2))>0);
disp('winning trials = ')
disp(winNum)

disp(length(subjectData.eventwarning))

disp(mean(subjectData.reaction1))
disp(max(subjectData.reaction1))
disp(min(subjectData.reaction1))

disp(mean(subjectData.reaction2))
disp(max(subjectData.reaction2))
disp(min(subjectData.reaction2))

2. NIRS data

The 1st way to identify abnormalities in NIRS data is to plot all channel’s time series in one figure, like the figure below. In the following figure, the time series for each channel is plotted and aligned vertically. It’s easy to identify that the green channel (channel #44) has much more noise than others.

NIRS time series

Another way is to use wavelet transform. If the NIRS signal was acquired well, then the heart beating signal should be captured, leaving a bright brand in the frequency ~1Hz in the wavelet transform plot, just like the left plot in the figure below (the band close to period 8). If there is no such band, it does not necessarily mean the signal is trash, but you need to be cautious.

NIRS wavelet
NIRS wavelet

 

The third way is to check the correlation between hbo and hbr. They are supposed to have negative correlation. If not, or if they have perfect negative correlation (-1), then they might contain too much noise. We have a separate article on this method. Please check out https://www.alivelearn.net/?p=1767

[hbo,hbr,mark]=readHitachData('SA06_MES_Probe1.csv');

figure;plotTraces(hbr,1:52,mark)

figure;wt(hbo(:,1))

for ii=1:52; wt(hbo(:,ii)); pause; end

[badchannels] = checkDataQuality(hbo,hbr);

3. Digitizer data

You want to make sure the measure digitizer data is reasonable by looking at the probe positions in a 3D space.

Digitizer data
Digitizer data
pos_data=readPosFile('0001.pos');
figure;plot3(pos_data(:,1),pos_data(:,2),pos_data(:,3),'o');axis equal;



写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

第五十八期fNIRS Journal Club通知2024/12/07, 10am 王硕教授团队

理解噪音中的言语对老年听力损失患者来说是一个重大挑战。来自首都医科大学附属北京同仁医院耳鼻咽喉科研究所王硕教授团队的助理研究员王松建将为大家介绍他们采用同步EEG-fNIRS技术,从神经与血流动力学两
Wanling Zhu
10 sec read

第五十七期fNIRS Journal Club视频 王欣悦博士

Youtube: https://youtu.be/vyo-kECC2Ps 优酷:https://v.youku.com/v_show/id_XNjQzNTA0ODIwMA==.html 肢体语言——
Wanling Zhu
20 sec read

第五十七期fNIRS Journal Club通知2024/11/02, 10am 王欣悦博士

肢体语言——例如人际距离、眼神、手势等,如何影响我们的交流,是一个有趣的谜题。它们是优雅而神秘的代码,无本可依、无人知晓,却又无人不懂。来自南京师范大学的王欣悦博士将分享如何通过fNIRS超扫描技术,
Wanling Zhu
16 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *