A mistake in my False discovery rate (FDR) correction script

37 sec read

I have posted an FDR script at https://www.alivelearn.net/?p=1840. I noticed that there is a small bug. In rare cases, this bug will cause the most significant voxel to be classified as ‘non-significant’ while other voxels are ‘significant’.

Consider the following example:

p = [0.8147 0.9058 0.0030 0.9134 0.6324 0.0029 0.2785 0.5469 0.9575 0.9649 0.1576 0.9706 0.9572 0.4854 0.8003 0.1419 0.4218 0.9157];

The previous script will classify p(3) as significant but p(6) as non-significant.

Here is the updated version of the script:

function y = fdr0(p, q)
% y = fdr0(p, q)
%
% to calculate whether a pvalue survive FDR corrected q
%
% p: an array of p values. (e.g. p values for each channel)
% q: desired FDR threshold (typically 0.05)
% y: an array of the same size with p with only two possible values. 0
% means this position (channel) does not survive the threshold, 1 mean it
% survives
%
% Ref:
% Genovese et al. (2002). Thresholding statistical maps in functional
% neuroimaging using the false discovery rate. Neuroimage, 15:722-786.
%
% Example:
%   y = fdr0(rand(10,1),0.5);
%
% Xu Cui
% 2016/3/14
%

pvalue = p;
y = 0 * p;

[sortedpvalue, sortedposition] = sort(pvalue);
v = length(sortedposition);
for ii=1:v
    if q*ii/v >= sortedpvalue(ii)
        y(sortedposition(1:ii)) = 1;
    end
end

return;


Don't want to miss new papers in your field? Check out Stork we developed:

nirs2img, create an image file from NIRS data

I was asked where to get nirs2img script. Here it is. The download link is at the bottom of this article. nirs2img is to...
Xu Cui
51 sec read

One Reply to “A mistake in my False discovery rate (FDR) correction…”

Leave a Reply

Your email address will not be published. Required fields are marked *