Learning deep learning (project 2, image classification)

1 min read

In this class project, I built a network to classify images in the CIFAR-10 dataset. This dataset is freely available.

The dataset contains 60K color images (32×32 pixel) in 10 classes, with 6K images per class.

Here are the classes in the dataset, as well as 10 random images from each:

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

You can imagine it’s not possible to write down all rules to classify them, so we have to write a program which can learn.

The neural network I created contains 2 hidden layers. The first one is a convolutional layer with max pooling. Then drop out 70% of the connections. The second layer is a fully connected layer with 384 neurons.

def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    model = conv2d_maxpool(x, conv_num_outputs=18, conv_ksize=(4,4), conv_strides=(1,1), pool_ksize=(8,8), pool_strides=(1,1))
    model = tf.nn.dropout(model, keep_prob)

    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    #   flatten(x_tensor)
    model = flatten(model)

    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
    #   fully_conn(x_tensor, num_outputs)
    model = fully_conn(model,384)

    model = tf.nn.dropout(model, keep_prob)

    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    #   output(x_tensor, num_outputs)
    model = output(model,10)

    # TODO: return output
    return model

Then I trained this network using Amazon AWS g2.2xlarge instance. This instance has GPU which is much faster for deep learning (than CPU). I did a simple experiment and find GPU is at least 3 times faster than CPU:

if all layers in gpu: 14 seconds to run 4 epochs,
if conv layer in cpu, other gpu, 36 seconds to run 4 epochs

This is apparently a very crude comparison but GPU is definitely much faster than CPU (at least the ones in AWS g2.2xlarge, cost: $0.65/hour)

Eventually I got ~70% accuracy on the test data, much better than random guess (10%). The time to train the model is ~30 minutes.

You can find my entire code at:
https://www.alivelearn.net/deeplearning/dlnd_image_classification_submission2.html



文献鸟 618 活动


写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

第六十四期fNIRS Journal Club视频 黄润玉

Youtube: https://youtu.be/8lyoR_K2BYA 优酷:https://v.youku.com/v_show/id_XNjQ4MjU2Mzk3Mg==.html 随着全球老龄
Wanling Zhu
14 sec read

第六十四期fNIRS Journal Club通知2025/7/12, 10am 黄润玉

该文章的声音简介(中文版): 该文章的声音简介(英文版): 随着全球老龄化加剧,越来越多老年人面临数字化适应、子女异地独居适应等问题。在青年志愿者人数明显不足以覆盖老龄人口的现实情况下,让老年同龄人进
Wanling Zhu
9 sec read

第六十三期fNIRS Journal Club视频 张百强

Youtube: https://youtu.be/vBsdcx08ZV4 优酷:https://v.youku.com/video?vid=XNjQ4NTcxNjM4MA%3D%3D fNIRS信号
Wanling Zhu
13 sec read

2 Replies to “Learning deep learning (project 2, image classification)”

  1. Helpful post. Can you explain your motivation behind using standard deviation on 0.1 while initializing the weights. My network does not learn if i keep the standard deviation to 1. Only when i saw your post and fine tuned my standard deviation to 0.1, it started training. i would like to understand how did you choose the standard deviation of 0.1 🙂

  2. Can you explain how you arrived at the values below?

    model = fully_conn(model,384)
    #model = fully_conn(model,200)
    #model = fully_conn(model,20)

Leave a Reply

Your email address will not be published. Required fields are marked *