To beginner: task-based fNIRS study design (2)

1 min read

This is a guest post by Ning Liu from Stanford University.

A basic block design includes two conditions: task condition and control condition. The two conditions present alternatively, thus is also called ‘AB block’ (Fig. 1A). This design assumes that the two conditions can be cognitively added, implying no interactions among the cognitive components of a task. A subtraction comparison strategy then can be used in the data analysis to assess the brain regions involved in the performance of the task. Although, in most cases, this assumption is invalid, many people still use it because it usually produces robust and reproducible results. A block design task often includes more than five epochs per condition, and each epoch lasts 10 to 30 seconds. As an example, we used the following block-designed emotional face task in one of our studies: R-F-S-F-S-F-S-F-S-F-S-F-S-R, where R, F and S represent rest, fearful face and scrambled face epochs respectively. Each task epoch (both F and S) lasts 20 s, and each rest epoch lasts 30 s. (Liu, et al. 2015)
Event-related design (Fig.1B) allows the order of conditions present randomly and the time intervals between stimuli vary. This design is more naturalistic and allows for detecting transient variations in hemodynamic responses (HRF). However, event-related design usually needs more number of stimuli in order to enhance the statistical power, and the experiments are often longer than blocked designs.
Mixed design (Fig. 1C) combines block and event-related designs. It alternates two conditions (task and control) as in a block design. Within a block, the interstimulus interval (ISI) varies as in an event-related design. It allows for extracting brain regions either exhibiting transient neural activity (item-related information processing) or sustained neural activity (task-related information processing). However, it involves more assumptions than other designs, and the estimation of the HRF is poorer than event-related design.

experiment design
Fig. 1. Experiment design (A)Block design (B)Event design (C)Mixed design (ref Edson et al. 2006)

Amaro E Jr, Barker GJ, “Study design in fMRI: basic principle”, Brain and Cognition, 2006, 60(3):220-32.
Liu N, Cui X, Bryant DM., Glover GH, Reiss AL, “Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy”, Biomedical Optics Express, 2015, 6(3): 1074-89. doi: 10.1364/BOE.6.001074.

Receive email notification via email
Don't want to miss new papers in your field? Check out Stork we developed:

第十期 fNIRS Journal Club 通知 2020/7/25,10am

北京时间2020年7月25日周六上午10点,北京航空航天大学的汪待发副教授,博士生导师,将为大家讲解他们组去年发表的一篇脑机交互(BCI)的近红外文章。欢迎大家参加并参与讨论。 他要讲的文献如下:Y. Zheng,D. Zhang, L. Wang, Y. Wang, H. Deng, S. Zhang, D. Li, D. Wang, “Resting-State-Based Spatial Filtering for an fNIRS-Based Motor Imagery...
Xu Cui
1 min read

fNIRS Journal Club 视频 浙江大学刘涛研究员

浙江大学刘涛研究员 浙江大学的刘涛研究员,博士生导师, 为大家讲解一篇商科领域的EEG文章: Samuel B. Barnett, and Moran Cerf (2017), “A ticket for your thoughts: Method for predicting content recall and sales using neural...
Xu Cui
10 sec read

fNIRS Journal Club 通知 2020/6/28, 11am

北京时间2020年6月28日周日上午11点,浙江大学的刘涛研究员,博士生导师, 将为大家讲解一篇商科领域的EEG文章。文章中提出的方法对近红外领域有很好的借鉴作用。同时,刘老师会结合他最近的一篇文章,讲一下类似的时间窗口方法可以帮助我们了解什么额外信息。 时间: 北京时间2020年6月28日周日上午11点 地点: https://zoom.com房间号: 876 6491 1732密码: 819151 他要讲的文献如下: Samuel B. Barnett, and Moran Cerf (2017), “A ticket for your thoughts: Method...
Xu Cui
50 sec read

2 Replies to “To beginner: task-based fNIRS study design (2)”

  1. Being new to fNIRS research I was wondering if it is possible to also use shorter rest epochs in a blocked design making the design more efficient? Most studies use a 30 s rest epoch and thereby make sure that the BOLD response has recovered before the next block begins. However, the classical model of the BOLD response is peaking around 6s after stimulus onset and after 15 s there is the negative undershoot with a rather small amplitude. Given the lower signal-to-noise ratio, I would assume that NIRS doesn’t capture this negative undershoot? Do you have experience with that or are aware of any literature investigating this?
    Based on these assumptions it would be possible to reduce the time of the resting period to 15 s or even 10 s. I am happy about any comments on that.

  2. The following is answered by Ning Liu:

    If your goal is to study HRF with block design, then longer resting time is better. As your said, HRF usually needs 15-20s to back to initial level.
    There are many publications regarding this topic. To list a few:

    Franceschini, M.A., Fantini, S., Thompson, J.J., Culver, J.P., Boas, D.A., 2003. Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near-infrared optical imaging. Psychophysiology 40, 548–560.

    Franceschini, M.A., Toronov, V., Filiaci, M., Gratton, E., Fanini, S., 2000. On-line optical imaging of the human brain with 160-ms temporal resolution. Opt. Express 6, 49–57.

    Abtahi, M., Amiri, A.M., Byrd, D., Mankodiya, K., 2017. Hand Motion Detection in fNIRS Neuroimaging Data. Healthcare (Basel) 5(2):20.

Leave a Reply

Your email address will not be published. Required fields are marked *