Temporal resolution of CW fNIRS devices

1 min read

This is a guest post by Ning Liu from Stanford University.

Temporal resolution provides information on the distance of time between the acquisitions of two images (data) of the same area. It is the reciprocal of sampling rate (or acquisition rate) of an fNIRS device. For some devices, sampling rate is a fixed number; for some other ones, sampling rate may depend on number of sources or detectors to use. Why is that? It is because they have different instrumental design. For those with unfixed sampling rate, multiple sources time-share an optical detector by means of a multiplexing circuit that turns the sources on and off in sequence, so that only one source within the detector range is on at any given time. The NIRx system, for instance, are using this type of design. For those with fixed sampling rate, they usually use low frequency modulated light source to provide the excitation light, thus one detector can ‘see’ only one source.

For instance, Hitachi ETG4000 system has sampling rate of 10Hz (from http://www.hitachi.com/businesses/healthcare/products-support/opt/etg4000/contents2.html), thus its temporal resolution is 100ms. Some other device, such as NIRScout, has sampling rate from 2.5 – 62.5 Hz (from https://nirx.net/nirscout/), thus its temporal resolution is 16 – 400ms. Why the sampling rate is changing from 2.5 – 62.5 Hz? That’s because users can choose different number of sources and detectors in their configuration. The more number of sources and detectors to use, the smaller the sampling rate. The following table is from a review article (Scholkmann, et al., 2014) on NeuroImaging volume 85 (2104), a special issue of functional near-infrared spectroscopy. It summarizes the specifications of some popular commercially available fNIRS devices, mainly focused on continuous wave devices.

Time resolution of NIRS devices
Time resolution of NIRS devices (click to enlarge, F. Scholkmann et al. / NeuroImage 85 (2014) 6–27)


第十六期 fNIRS Journal Club 视频

北京时间2021年1月23日周日下午1点, 瑞典 Karolinska Institutet的潘亚峰博士为大家讲解了他们最近发布的一篇用超扫描研究教师学生关系的文章。视频如下: Youtube: https://youtu.be/SrqU60b6lyk Youku: https://v.youku.com/v_show/id_XNTA4MDc2NjIwNA==.html
Xu Cui
5 sec read

第十六期 fNIRS Journal Club 通知 2021/01/23,1pm

瑞典 Karolinska Institutet的潘亚峰博士将为大家讲解他们最近发布的一篇用超扫描研究教师学生关系的文章。热烈欢迎大家参与讨论。潘博士为了这次报告,需要一大早就起床。因此本次报告的时间比过去要稍晚一点。 时间: 北京时间2021年1月23日周六下午1点地点: https://zoom.com房间号: 815 4986 9861密码: 796475 Pan, Guyon, Borragán, Hu, Peigneux (2020) Interpersonal brain synchronization with instructor compensates for learner’s...
Xu Cui
53 sec read

第十五期 fNIRS Journal Club 视频

北京时间2020年12月27日周日上午10点, 香港中文大学二年级博士生胡玥讲了一篇用神经网络去除运动伪迹的文章。视频如下: Youtube: https://youtu.be/mZkGzm1R7ak Youku: https://v.youku.com/v_show/id_XNTAyODUyMTEyOA==.html
Xu Cui
4 sec read

One Reply to “Temporal resolution of CW fNIRS devices”

  1. Hello Ning and Xu,

    Great read, thanks for this!

    Just wanted to let you know that the NIRScout has been extended to 100hz max sampling rate with the newest version of NIRStar 15-2, so the typical range for sampling with that system would then be roughly ~4-100hz, depending on the source illumination multiplexing sequence.

    Keep up the great work!


    Thomas Johannsen
    NIRx Medical Technologies

Leave a Reply

Your email address will not be published. Required fields are marked *