Statistical type II error (beta), and power

1 min read

Even though I learned power analysis in elementary statistics class, I totally forget it because I never use it. As we have to put power analysis in our grant, I am forced to relearn this topic.

Definition: type II error:

  • null hypothesis should be rejected but we don’t
  • or, false negative (there is an effect but fail to detect it)

(Null hypothesis is usually boring, e.g. mean=0, or no difference between two samples etc. So null hypothesis usually means no effect, or negative. Rejecting null hypothesis is “finding positive effect” and thus usually “exciting”. )

Definition: the probability of type II error is called beta

Definition: power is 1 – beta

How to calculate beta (or power)?

You need (1) null hypothesis (2) alpha, type I error cut off, usually 0.05 (3) standard deviation (or distribution) of samples

Step:

  1. calculate the decision point (to reject or accept null hypo) based on your null hypo and alpha
  2. calculate beta based on the decision point above and (3)

Example:

You null hypothesis is “mean of A is 0”. You measured A 100 times. The mean is 1 and standard deviation is 10 (and thus the standard deviation of mean is 10/sqrt(100)=1). You are deciding if the null hypothesis should be rejected and what is beta if alpha is 0.05. You calculate and find the p value is 0.1587, which is bigger than 0.05 so you accept the null hypothsis.

Then what is the probability that this decision is indeed wrong (you accept null hypo but indeed null hypo is false)? or beta?

As you make decisions based on alpha = 0.05, that means your decision point of mean of sample is 1.65: if the mean of sample is bigger than 1.65, you reject null; if smaller than 1.65, you accept it (like in our case where mean is 1). So beta equals to the probability that you find mean of sample is <1.65, while the true mean is 1. And this probability is 0.74. And power is thus 0.26.

To increase power, you usually need to increase the sample size. In our case, as the standard deviation of sample is very high, we need a lot more samples. If our N = 400, then our decision point will become 0.83 and the power will increase to 0.63.



写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

第五十八期fNIRS Journal Club通知2024/12/07, 10am 王硕教授团队

理解噪音中的言语对老年听力损失患者来说是一个重大挑战。来自首都医科大学附属北京同仁医院耳鼻咽喉科研究所王硕教授团队的助理研究员王松建将为大家介绍他们采用同步EEG-fNIRS技术,从神经与血流动力学两
Wanling Zhu
10 sec read

第五十七期fNIRS Journal Club视频 王欣悦博士

Youtube: https://youtu.be/vyo-kECC2Ps 优酷:https://v.youku.com/v_show/id_XNjQzNTA0ODIwMA==.html 肢体语言——
Wanling Zhu
20 sec read

第五十七期fNIRS Journal Club通知2024/11/02, 10am 王欣悦博士

肢体语言——例如人际距离、眼神、手势等,如何影响我们的交流,是一个有趣的谜题。它们是优雅而神秘的代码,无本可依、无人知晓,却又无人不懂。来自南京师范大学的王欣悦博士将分享如何通过fNIRS超扫描技术,
Wanling Zhu
16 sec read

2 Replies to “Statistical type II error (beta), and power”

  1. Hi,
    I came through your article while i was searching on how to answer some statistic questions posted to me. I hope you are generous enough probably to help me out with the questions as statistics are totally beyond my field.

    The questions are: Calculate the coeeficient of variance and use it to determine the power of the study.

    Here is the scenario:
    We have 1 group of 22 subjects which was divided into 2 groups. Each group will be given TEST product or REFERENCE product and blood samples will be taken. The group will be switched to receive the other treatment after 1 week wash out period, hence yielding 22 readings each for TEST & REF.

    For Cmax, Mean TESTcmax = 11.43 ng/ml ; REFcmax = 10.27 ng/ml
    Standard deviation Cmax: TESTstdv = 5.88 ; REFstdv= 7.26

    You can find the Anova table here:
    http://answers.yahoo.com/question/index?qid=20140225204032AA9t1nP

    Hope you have your reply soon.

    TQ

Leave a Reply

Your email address will not be published. Required fields are marked *